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Abstract

The effective thermal conductivity of mono- and poly-dispersed random assemblies of spherical particles and irreg-

ular crystals, both dry and partially or fully saturated by wetting and non-wetting liquids, has been determined com-

putationally by numerical solution of the Fourier�s law on 3-D reconstructed media and experimentally by the transient

hot wire method. The effect of spatial distribution and volume fractions of the vapour, liquid, and solid phases on effec-

tive thermal conductivity was systematically investigated. A power-law correlation for estimating the effective conduc-

tivity, valid over a wide range of phase volume fractions and relative conductivities of components, has been proposed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

This work was motivated by the need to describe the

unit operation of contact drying, which is often used for

the removal of residual solvent from filter cakes during

the manufacture of various crystalline chemicals such

as active pharmaceutical ingredients. The heat necessary

for the evaporation of the solvent is supplied to the wet

particle mass via a heat-exchange surface, typically a

vessel jacket. In the initial ‘‘constant-rate’’ period of dry-

ing, the drying process is limited by heat transfer; the

overall heat-transfer coefficient depends on the effective

thermal conductivity [1].

The effective thermal conductivity of a wet mass of

particles depends on the thermal conductivities of its
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components (the gas, liquid, and solid phase), on their

phase volume fractions, and on the microstructure (i.e.

the spatial distribution of all the three phases). The

microstructure of a wet particle assembly can be rela-

tively complex [2,3]. A schematic microstructure is

shown in Fig. 1 and several examples of microstructures

used in this work for the calculation of effective thermal

conductivity are shown in Fig. 4. The particle size and

shape distributions mainly determine the packing den-

sity and the mean particle coordination number, while

the spatial distribution of the liquid phase within the

particle assembly depends on the liquid–gas interfacial

tension and the equilibrium contact angle, as well as

on the particle morphology.

As drying proceeds, all these parameters can—and

often do—change as a result of particle agglomeration

or breakage, solvent evaporation and subsequent solid

re-crystallisation, etc. If one wishes to describe the dry-

ing process accurately, it is desirable to have a means
ed.
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Nomenclature

A unit cell size cross-sectional area, m2

c exponent in power-law correlation

L unit cell size, m
_Q heat flux, W

T temperature, K

x phase volume fraction, dimensionless

Greek symbols

k thermal conductivity, Wm�1K�1

heq equilibrium contact angle

Subscripts and superscripts

e effective

G gas

L liquid

S solid
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Fig. 2. Effective thermal conductivity of a two-phase system A–

B as function of the phase volume fraction of phase B for three

theoretical models: conductors in parallel, in series, and well

mixed (kA = 0.03Wm�1K�1, kB = 1.0Wm�1K�1).
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of calculating the effective thermal conductivity as func-

tion of the phase volume fractions and thermal conduc-

tivities of the components over a range of particle

packing density and relative solvent content.

It is possible to derive analytical expressions for the

effective thermal conductivity of certain geometrically

simple arrangements, notably the limiting cases of con-

ductors in series and in parallel. For conductors in par-

allel, we have

ke ¼
X

i¼G;L;S

xiki ð1Þ

where ke [Wm�1K�1] is the effective thermal conductiv-

ity, xi are the volume fractions and ki the thermal con-

ductivities of the individual phases. Conductors in

parallel represent the theoretical upper bound for ke.

For conductors in series, which represent the theoretical

lower bound, we have

k�1
e ¼

X
i¼G;L;S

xik
�1
i ð2Þ

Finally, the effective thermal conductivity of ideally

mixed phases is their weighted geometric mean

ke ¼
Y

i¼G;L;S

kxi
i ð3Þ
Fig. 1. (a) Schematic three-phase microstructure formed by a packin

composition of a three-phase system will be shown on a triangular p
The dependence of ke on xB for a binary system A–B is

shown in Fig. 2 for the above three theoretical cases. For

real microstructures, the functional dependence ke(ki,xi)
g of rectangular particles and some interstitial liquid. (b) The

hase diagram.
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has an a priori unknown form, which has to be deter-

mined for each class of microstructure individually.

One of two approaches is typically used: (i) experimen-

tal, by using empirical or semi-empirical expressions,

which are usually based on the idea of some mixture

of the parallel and serial arrangements or on the Max-

well equation, or (ii) computational, by solving the Fou-

rier�s law on a domain that represents the microstructure

of interest.

The former approach has been used e.g. for the

experimental determination of the effective thermal con-

ductivity of packed beds of porous particles saturated by

a binary liquid [4], thermal conductivity of dry sand with

varying particle size distribution [5], thermal conductiv-

ity of compressed packed beds as function of the com-

pression ratio [6], thermal conductivity of model

composite soils [7], thermal conductivity of wet concrete

as function of water content [8], thermal conductivity of

a packing of seeds as function of moisture content [9], or

the conductivity of a packing of multi-sized coarse

spheres as function of porosity and water addition

[10]. Although many of these cited works deal with mul-

ti-phase systems, the reported data ranges are usually

too narrow to allow the derivation of generally valid

correlations for the calculation of ke.

As far as theoretical and computational approaches

are concerned, modified versions of the Maxwell�s equa-

tion for the conductivity of a dispersion of mono-sized

spheres in a continuous matrix have been proposed

[11–13]. This problem has also been studied computa-

tionally by direct numerical simulation [14] and by the

combination of a rigorous solution on a two-sphere

junction and a network model of the particle packing

[15]. Apart from dispersions or packing of spheres, sys-

tems with aspherical particles were also studied [16,18],

as well as various other structures such as fractals

[19,20] or aerogels [21]. Heat conduction in a three-

phase system has been considered [22] but a systematic

parametric study that would result into the derivation

of more generally applicable correlations has not been

made to date.

The objective of this work was to develop a method

and devise correlations for estimating the thermal con-

ductivity of three-phase microstructures consisting of

randomly packed solid particles partially or fully satu-

rated by a liquid phase, valid over a wide range of phase

volume fractions and relative conductivities of the com-

ponents. Note that the problem of finding the effective

thermal conductivity of partially liquid-saturated parti-

cle packings is similar to that of finding the electrical

resistivity index of partially saturated porous media,

which has been recently solved by Békri et al. [23]. The

main difference is that in the case of thermal conductiv-

ity, all three phases are generally conductive, whereas in

the mentioned case of electrical resistivity, only one

phase was.
2. Methodology

The overall methodology consisted of three steps:

(1) Computational and experimental realisation of

three-phase microstructures by systematic variation

of the phase volume fractions of the solid and liquid

phase, the particle shape and size distribution, the

liquid–solid contact angle, and the conductivities

of the components.

(2) Computational (by solving the Fourier�s law) and

experimental (by a transient hot wire method)

determination of the effective thermal conductivity

for the realised microstructures.

(3) Finding a function ke(ki,xi) that best fits the data

sets. This estimator function should be suitable

for engineering calculations, we do not require that

it be theoretically founded.
2.1. Computational

The computational determination of effective thermal

conductivity consists of three steps: (i) microstructure

realisation; (ii) solution of the Laplace equation; (iii) cal-

culation of the effective thermal conductivity from con-

verged temperature profile.

Three types of microstructures were used in this

work—close random packing of hard and soft spheres,

random packing of overlapping cubes, and a random

packing of model crystals (rectangular particles with as-

pect ratio of 4:1). The close packing of particles was gen-

erated by the ballistic deposition algorithm [16,17]

whereby particles are inserted into the simulation unit

cell one at a time. Starting from random position at

the top of the cell, they follow a trajectory under the ac-

tion of two forces: an attractive ‘‘gravitational’’ force

which is constant in magnitude and oriented towards

the bottom of the unit cell. The other force is a repulsive

‘‘collision’’ force which comes into effect when the

incoming particle collides with particles already present

in the unit cell. The collision force is proportional to

the interparticle overlap by an ‘‘elasticity’’ constant.

The particle movement is stopped when the repulsive

force exactly offsets the attractive force—usually when

the incoming particle rests on three supporting particles

having minimised (locally) its potential energy. The elas-

ticity constant determines the final degree of overlap be-

tween the particles and it can take values from 0% (hard

particles) up to 100% (completely penetrable particles).

The liquid-filled microstructures were generated by

adding the required volume fraction of the liquid phase

into an existing particle packing in the form of discrete

droplets that were placed into random positions and

subsequently allowed to spread to its equilibrium posi-

tion by the Volume-of-Fluid algorithm [24]. The local

equilibrium position of a liquid cluster is defined as



Fig. 3. Unit cell for calculating the effective thermal conductivity. A temperature gradient is applied across the unit cell and the

Fourier�s law is solved until convergence, ke is then calculated from the steady-state heat flux. The cross-section shows the field of

norms of the heat flux at steady state, gray-scale levels are proportional to the heat flux intensity.
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such spatial arrangement in which the liquid–gas

interfaces have a constant curvature and the equilibrium

contact angle is satisfied at all three-phase contact lines

[25].

The next step was the solution of the Fourier�s law on

a cubic unit cell of size L containing the microstructure

of interest (see Fig. 3). At steady state, the accumulation

terms are zero and the differential enthalpy balance has

the form

rðkrT Þ ¼ 0 ð4Þ

where T [K] is temperature and k = k(x) is the local ther-

mal conductivity, as defined by the microstructure (i.e.,

kS, kL, kG). The boundary conditions are T = T1 at

z = 0, T = T2 at z = L, and $T = 0 at x = 0, x = L,

y = 0, and y = L (i.e., a macroscopic temperature gradi-

ent (T2 � T1)/L is imposed across the unit cell in the

z-direction and insulating walls are imposed in the x-

and y-directions). The Laplace equation (Eq. (4)) was

solved numerically on a grid of 100 · 100 · 100 points

using finite difference discretisation and the successive

over-relaxation method [26].

The effective thermal conductivity was then calcu-

lated from the converged temperature field from the

formula

ke ¼ �
_Q1

A
L

ðT 2 � T 1Þ
ð5Þ

where L is the size of the unit cell in the z-direction, A is

the cross-section area of the unit cell perpendicular to

the z-direction (in our case A = L2), (T2 � T1) is the tem-

perature difference across the unit cell and _Q1 is the over-

all heat flux into the unit cell, obtained by integrating the

fluxes across the inlet face of the unit cell
_Q1 ¼
Z
A
�k

oT
oz

dxdy ð6Þ

( _Q2 could be used as well because at steady state there is

no net accumulation of heat in the unit cell and so _Q1

and _Q2 are equal.)

2.2. Experimental

A commercially available instrument KD2 (Decagon

Devices Inc., USA), which is based on the transient hot

wire method [27], was used for the measurement of effec-

tive thermal conductivity in this work. A thermal grease

was applied to the hot wire probe when measuring dry

samples in order to ensure good thermal contact be-

tween the probe and the particles. Glass beads (Sovitec,

Belgium) of various sizes were used as model particles

for the experiments. In particular, four size classes of

glass beads were used, named ‘‘AH’’, ‘‘AF’’, ‘‘AC’’,

and ‘‘BL’’, with mean diameters d50 = 68, d50 = 112,

d50 = 200, and d50 = 628lm, respectively. Deionised

water was used as model liquid. All measurements were

performed at ambient conditions (�25 �C, normal

pressure).
3. Results and discussion

3.1. Effect of phase volume fractions

The effect of the volume fractions xi of the gas, liquid,

and solid phases on the effective thermal conductivity ke

of a particle packing partially saturated by a liquid was

investigated first. Since the random close packing of uni-

form spheres would only give one value of packing den-

sity, several random packings were generated by the
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ballistic deposition algorithm from spheres of two sizes

(d1 = 4d2) by systematically varying the ratio at which

the smaller and the larger spheres were mixed

(n1:n2 = 1:1, 1:2, 1:4, and 1:8). By further changing the

particle ‘‘elasticity’’ parameter in the deposition algo-

rithm, packing densities in the range 0.50 < xS < 0.70

were eventually generated.

For each value of xS, the relative volume fraction of

the liquid phase, x0L � xL=ð1 � xSÞ, was varied from 0.0

to 1.0 by random addition of liquid droplets with dia-

meter d2 into the particle packing and then letting each

liquid-phase cluster spread into its equilibrium position.

Both hydrophilic (heq = 0�) and hydrophobic (heq = 90�)
conditions were generated. An example of one micro-

structure is shown in Fig. 4b.

The effective thermal conductivity was then calcu-

lated for each realisation of the microstructure by solv-

ing the Fourier�s law as described in Section 2. The

component conductivities were set to typical values of

kS = 1.0, kL = 0.1, and kG = 0.01Wm�1K�1. The com-

plete set of simulation results is shown in Fig. 5. The
Fig. 4. Examples of microstructures used for the calculation of effectiv

(b) close random packing of a binary mixture of hard spheres parti

rectangular particles with aspect ratio 4:1, partially filled by a wetting
effective thermal conductivity is plotted in a dimension-

less form (scaled by kS). This allows the recalculation of

the dimensional thermal conductivity ke also for other

systems by simple multiplication by kS, as long as the

ratio kS/kL remains constant. Rescaling for general kS/

kL ratios is discussed in Section 3.3.

The results suggest that the dependence ke(xL) for

constant xS could be approximated by a linear function

in this region of the phase space, which means that when

conductivities for the end points (i.e., x0L ¼ 0:0 and

x0L ¼ 1:0) are know from experiments, simulation, or

from an estimation function, the rest can be calculated

by linear interpolation. Experimentally measured

dependence ke(xL) for mono-dispersed glass beads

(d50 = 200lm) wetted by water is shown in Fig. 6 and

compared with simulations for the same system. The

simulations are in a relatively good agreement with

experiments for higher values of liquid saturation, while

for dry systems the effective thermal conductivity is

overpredicted by the simulations. This is most probably

due to poor approximation of singular contacts between
e thermal conductivity: (a) random filling of overlapping cubes;

ally filled by a wetting liquid; (c) and (d) random assembly of

and non-wetting liquid, respectively.
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the beads by the finite difference discretisation scheme

which has been used.

As mentioned above, if the effective conductivity of

the two binary systems (dry and fully saturated particle

packing) is known, then the effective conductivity of the

intermediate cases (0:0 < x0L < 1:0) can be obtained by

interpolation. The dependence ke(xS) for x0L ¼ 0:0 and

x0L ¼ 1:0 obtained from computer simulations is shown

in Fig. 7. Within this range of xS even this dependence
could be approximated by a linear function but it will

be shown below that a power-law function can be found

that fits the data over a wider range of solid phase vol-

ume fractions (this power-law fit is already shown in

Fig. 7 as the solid lines).

The dependence of ke on xS for a dry system was also

measured experimentally. Different values of xS were

realised by mixing glass beads of two different sizes in

various ratios. The coarse fraction were beads of type

BL and the two fine fractions were beads of type AF

and AH. Four data sets are shown in Fig. 8, correspond-
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ing to mixtures AF–BL and AH–BL where in each case

the fine particles were gradually added to the coarse ones

and vice versa. The maximum packing density and thus

the maximum effective thermal conductivity was higher

for the AH–BL mixture than for AF–BL because the

AH particles fit better into the void space of a packing

of BL particles thanks to their smaller size. The actual

dependence of the packing density xS on the mixing

ratio for the AH–BL system is shown in Fig. 9 together

with a schematic illustration of the packing of a binary

mixture. The maximum corresponds to a situation when

additional fine particles no longer fit into the void space

between the coarse ones and instead start to act as spac-

ers that dilute the original close-packed structure of the

coarse particles. This situation occurs for a higher mass

fraction of added fine particles in the case of the AF-BL

system. The combination of the dependence of ke on the

mixing ratio with the dependence of xS on the mixing

ratio allows the comparison of experimentally measured

data with prediction by numerical simulations, such as

those in Fig. 7.
Fig. 9. Illustration of a situation where a fine particle fits into

the void space created by a packing of the coarse particles and

an example of a packing of a mixture of coarse and fine spheres

where the fine particles act as ‘‘spacers’’ that dilute the coarse

particle packing (top). Dependence of the packing density on

mixing ratio (bottom).
3.2. Effect of microstructure

The effect of the spatial arrangement of the phases on

effective conductivity was investigated next. Microstruc-

ture can be affected by the particle shape in the case of

the solid phase, or particle wettability in the case of

the liquid phase. The computer simulation study pre-

sented in Fig. 5 was performed for both hydrophilic

and hydrophobic particles and the results were, some-

what against expectation, practically identical. Micro-

structures representing a random packing of model

crystals (rectangular particles with aspect ratio 4:1) were

also generated and filled with both wetting and non-wet-

ting liquid phase in the entire range 0:0 < x0L < 1:0.

These microstructures are shown in Fig. 4c and d.

The dependence ke(xL) for hydrophobic and hydro-

philic crystals is compared with that of a packing of

hydrophilic spheres with the same phase volume fraction

of the solid phase (xS = 0.64) in Fig. 10. As can be seen,

in this range of parameters there is practically no differ-

ence between the microstructures. To find out if there is

an effect for other values of xS in the range 0.5 <

xS < 0.7, which is of interest for drying, the effective con-

ductivity for the limiting dry (x0L ¼ 0:0) and wet

(x0L ¼ 1:0) cases for a random packing of hard spheres

was compared with that of a random assembly of over-

lapping cubes (microstructure in Fig. 4a). This compar-

ison is shown in Fig. 7 and it is evident that while there is

little difference for the wet case, the two systems start to

deviate somewhat more for lower values of xS in the dry

case. Since identical microstructures of the solid phase

were used for each xS and the only difference was

the conductivity of the fluid phase (kL = 0.1 and
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kG = 0.01Wm�1K�1), this deviation is due to the com-

ponent conductivities (their ratio).

3.3. Effect of component conductivities

To investigate further the effect that component con-

ductivities have on the overall conductivity of a given

microstructure, a series of simulations for a binary sys-

tem A–B was performed, whereby the ratio of the com-

ponent conductivities kB/kA was systematically varied in

the range of 2:1, 5:1, 10:1, 20:1, 50:1, and 100:1. Two dif-

ferent absolute values of kA were used, kA = 0.1 and

kA = 0.01Wm�1K�1, and some of the ratios (e.g.,

10:1) were realised for both of these values. The micro-

structures were random assemblies of overlapping cubes

of phase B in (initially continuous) phase A. The micro-

structures can thus be interpreted as completely ‘‘dry’’ or

‘‘wet’’ versions of the microstructure shown in Fig. 4a.

The results of the computational study are shown in

Fig. 11. All data sets were fitted by a power-law function

(in fact Archie�s law) of the form

ke ¼ ðkB � kAÞxcB þ kA ð7Þ

where the exponent c depends on the ratio of conductiv-

ities kB/kA and this dependence is generally different for

each class of microstructure. Eq. (7) gave the best fit of

the data (in terms of the mean square error) compared

with other functions that were tried, e.g. various

weighted averages of the parallel, serial, and well-mixed

cases where the weights were the fitting parameters. The

dependence of the exponent c on the ratio of conductiv-

ities kB/kA is shown in Fig. 12 for two microstructures—

the random close packing of hard spheres (Fig. 4b) and

the random assembly of overlapping cubes (Fig. 4a).
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The curves were fitted by logarithmic functions; for

spheres,

c ¼ 0:136 logðkB=kAÞ þ 1:27 ð8Þ

and for cubes,

c ¼ 0:239 logðkB=kAÞ þ 1:10 ð9Þ

These correlations are valid in the range 2 < kB/kA < 100

and xB as indicated in Fig. 12. As has been mentioned in

the discussion following Fig. 7, the difference between

the two microstructures is more profound for higher val-

ues of the ratio kB/kA. The functional dependence c(kB/

kA) can be generated for other classes of microstructures

that would be of interest, using the same computational

methodology.

3.4. General three-phase systems

Eq. (7) allows the estimation of the effective thermal

conductivity of binary systems. For ternary and gener-

ally n-ary systems, it can be applied hierarchically by

defining a sequence of binary pseudocomponents and

interpolating between them. For example, in the case

of a ternary gas–liquid–solid (G–L–S) system, one

would first estimate the conductivity of the binary sys-

tems G–S and L–S using the actual volume fraction of

the solid phase xS. Then the appropriate value of the

exponent c would be found, i.e. c(kS/kL) for L–S and

c(kS/kG) for G–S. Finally, one would interpolate be-

tween the ‘‘dry’’ (G–S) and ‘‘wet’’ (L–S) pseudocompo-

nents using the relative volume fraction of the liquid

phase x0L � xL=ð1 � xSÞ.
This is demonstrated in Fig. 13, where the data points

are the results of computer simulations on cubic micro-

structure (Fig. 4) over the entire range of phase volume

fractions, i.e. 0.0 < xS < 1.0 and 0:0 < x0L < 1:0. The
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Fig. 13. Computer simulation results of the dependence of

effective thermal conductivity of random assembly of uniform

cubes (microstructure is shown in Fig. 4a) on composition,

covering the entire range of phase volume fractions as shown in

the inserted phase diagram. The full lines show estimates

obtained by linear interpolation between conductivities of

binary pseudocomponents calculated from a power-law func-

tion, the dashed lines join points of constant xS to guide the eye

(kG = 0.01, kL = 0.1, and kS = 1.0Wm�1K�1).
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solid lines are linear interpolations between binary pseu-

docomponents (G–S and L–S) whose conductivities

were estimated using Eq. (7). The conductivity estimated

for the L–S pseudocomponent is nearly perfect; for the

G–S pseudocomponent there are small errors due to

the relatively large ratio kS/kG, but taken over the entire

phase plane the prediction is satisfactory for the purpose

of engineering calculations.
4. Conclusions

The effect of composition and microstructure on the

effective thermal conductivity of particle assemblies par-

tially wetted by a liquid, was investigated. The effective

thermal conductivity was mapped over a broad range

of phase volume fractions and ratios of individual com-

ponent conductivities, and the data were fitted by a rel-

atively simple power-law correlation suitable for a priori

estimation of effective thermal conductivity for chemical

engineering calculations. The methodology presented in

this work is general and can be used for the estimation of

effective thermal conductivity of various two-, three-,

and multi-phase systems such as suspensions, emulsions,

foams or composite materials, e.g. polymer blends,

pastes, or even biological tissues.
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